# MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 

$4^{\text {th }}$ Edition

## Michael S. Mamlouk Arizona State University

John P. Zaniewski<br>West Virginia University

## Solutions Manual

## FOREWORD

This solutions manual includes the solutions to numerical problems at the end of various chapters of the book. It does not include answers to word questions, but the appropriate sections in the book are referenced. The procedures used in the solutions are taken from the corresponding chapters and sections of the text. Each step in the solution is taken to the lowest detail level consistent with the level of the text, with a clear progression between steps. Each problem solution is self-contained, with a minimum of dependence on other solutions. The final answer of each problem is printed in bold.

Instructors are advised not to spread the solutions electronically among students in order not to limit the instructor's choice to assign problems in future semesters.

## CHAPTER 1. MATERIALS ENGINEERING CONCEPTS

1.2. Strength at rupture $=\mathbf{4 5} \mathbf{~ k s i}$

Toughness $=(45 \times 0.003) / 2=\mathbf{0 . 0 6 7 5} \mathbf{k s i}$
1.3. $\mathrm{A}=0.6 \times 0.6=0.36 \mathrm{in}^{2}$
$\sigma=50,000 / 0.36=138,888.9 \mathrm{psi}$
$\varepsilon_{\mathrm{a}}=0.007 / 2=0.0035 \mathrm{in} / \mathrm{in}$
$\varepsilon_{1}=-0.001 / 0.6=-0.0016667 \mathrm{in} / \mathrm{in}$
$\mathbf{E}=138,888.9 / 0.0035=\mathbf{3 9 , 6 8 2 , 5 4 3} \mathbf{~ p s i}=\mathbf{3 9 , 6 8 3} \mathbf{k s i}$
$\boldsymbol{v}=0.00166667 / 0.0035=\mathbf{0 . 4 8}$
1.4. $\mathrm{A}=201.06 \mathrm{~mm}^{2}$
$\sigma=0.945 \mathrm{GPa}$
$\varepsilon_{\mathrm{A}}=0.002698 \mathrm{~m} / \mathrm{m}$
$\varepsilon_{\mathrm{L}}=-0.000625 \mathrm{~m} / \mathrm{m}$
$\mathbf{E}=350.3 \mathbf{G P a}$
$v=0.23$
1.5. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=28.27 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=-150,000 / 28.27 \mathrm{in}^{2}=-5.31 \mathrm{ksi}$
$\mathrm{E}=\sigma / \varepsilon=8000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=-5.31 \mathrm{ksi} / 8000 \mathrm{ksi}=-0.0006631 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{0}=-0006631 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=-0.00796 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12$ in -0.00796 in $=11.992$ in
$v=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.35$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.35(-0.0006631 \mathrm{in} / \mathrm{in})=0.000232 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \mathrm{d}_{\mathrm{o}}=0.000232(6 \mathrm{in})=0.00139 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=6 \mathrm{in}+0.00139 \mathrm{in}=\mathbf{6 . 0 0 1 3 9} \mathbf{~ i n}$
1.6. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=0.196 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=2,000 / 0.196 \mathrm{in}^{2}=10.18 \mathrm{ksi}$ (Less than the yield strength. Within the elastic region)
$\mathrm{E}=\sigma / \varepsilon=10,000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=10.18 \mathrm{ksi} / 10,000 \mathrm{ksi}=0.0010186 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{\mathrm{o}}=0.0010186 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=0.0122 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12 \mathrm{in}+0.0122$ in $=\mathbf{1 2 . 0 1 2 2}$ in
$v=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.33$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.33(0.0010186 \mathrm{in} / \mathrm{in})=-0.000336 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \quad \mathrm{d}_{\mathrm{o}}=-0.000336(0.5 \mathrm{in})=-0.000168 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=0.5$ in -0.000168 in $=0.49998$ in
1.7. $\mathrm{L}_{\mathrm{x}}=30 \mathrm{~mm}, \mathrm{~L}_{y}=60 \mathrm{~mm}, \mathrm{~L}_{z}=90 \mathrm{~mm}$

$$
\begin{aligned}
& \sigma_{x}=\sigma_{y}=\sigma_{z}=\sigma=100 \mathrm{MPa} \\
& \mathrm{E}=70 \mathrm{GPa} \\
& v=0.333
\end{aligned}
$$

$\varepsilon_{x}=\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] / E$
$\varepsilon_{\mathrm{x}}=\left[100 \times 10^{6}-0.333\left(100 \times 10^{6}+100 \times 10^{6}\right)\right] / 70 \times 10^{9}=4.77 \times 10^{-4}=\varepsilon_{y}=\varepsilon_{z}=\varepsilon$
$\Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=4.77 \times 10^{-4} \times 30=0.01431 \mathrm{~mm}$
$\Delta \mathrm{L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=4.77 \times 10^{-4} \times 60=0.02862 \mathrm{~mm}$
$\Delta \mathrm{L}_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=4.77 \times 10^{-4} \times 90=\mathbf{0 . 0 4 2 9 3} \mathbf{~ m m}$
$\Delta V=$ New volume - Original volume $=\left[\left(\mathrm{L}_{\mathrm{x}}-\Delta \mathrm{L}_{\mathrm{x}}\right)\left(\mathrm{L}_{\mathrm{y}}-\Delta \mathrm{L}_{\mathrm{y}}\right)\left(\mathrm{L}_{z}-\Delta \mathrm{L}_{z}\right)\right]-\mathrm{L}_{\mathrm{x}} \mathrm{L}_{\mathrm{y}} \mathrm{L}_{\mathrm{z}}$ $=(30-0.01431)(60-0.02862)(90-0.04293)]-(30 \times 60 \times 90)=161768-162000$ $=-\mathbf{2 3 2} \mathrm{mm}^{3}$
1.8. $L_{x}=4$ in, $L_{y}=4$ in, $L_{z}=4$ in

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma=15,000 \mathrm{psi} \\
& \mathrm{E}=1000 \mathrm{ksi} \\
& v=0.49 \\
& \varepsilon_{\mathrm{x}}=\left[\sigma_{\mathrm{x}}-v\left(\sigma_{\mathrm{y}}+\sigma_{\mathrm{z}}\right)\right] / \mathrm{E} \\
& \varepsilon_{\mathrm{x}}=[15-0.49(15+15)] / 1000=0.0003=\varepsilon_{\mathrm{y}}=\varepsilon_{\mathrm{z}}=\varepsilon \\
& \Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=0.0003 \times 15=0.0045 \mathrm{in} \\
& \Delta \mathrm{~L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=0.0003 \times 15=0.0045 \mathrm{in} \\
& \Delta \mathrm{~L}_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=0.0003 \mathrm{x} 15=0.0045 \mathrm{in} \\
& \Delta \mathrm{~V}
\end{aligned}=\text { New volume - Original volume }=\left[\left(\mathrm{L}_{\mathrm{x}}-\Delta \mathrm{L}_{\mathrm{x}}\right)\left(\mathrm{L}_{\mathrm{y}}-\Delta \mathrm{L}_{\mathrm{y}}\right)\left(\mathrm{L}_{\mathrm{z}}-\Delta \mathrm{L}_{\mathrm{z}}\right)\right]-\mathrm{L}_{\mathrm{x}} \mathrm{~L}_{\mathrm{y}} \mathrm{~L}_{\mathrm{z}} .
$$

1.9. $\varepsilon=0.3 \times 10^{-16} \sigma^{3}$

At $\sigma=50,000 \mathrm{psi}, \varepsilon=0.3 \times 10^{-16}(50,000)^{3}=3.75 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
Secant modulus $=\frac{\Delta \sigma}{\Delta \varepsilon}=\frac{50,000}{3.75 \times 10^{-3}}=\mathbf{1 . 3 3 \times 1 0 ^ { 7 }} \mathbf{~ p s i}$
$\frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16} \sigma^{2}$
At $\sigma=50,000 \mathrm{psi}, \frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16}(50,000)^{2}=2.25 \times 10^{-7} \mathrm{in} .^{2} / \mathrm{lb}$
Tangent modulus $=\frac{d \sigma}{d \varepsilon}=\frac{1}{2.25 \times 10^{-7}}=4.44 \times 10^{6} \mathbf{~ p s i}$
1.11. $\varepsilon_{\text {lateral }}=\frac{-3.25 \times 10^{-4}}{1}=-3.25 \times 10^{-4} \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=\frac{2 \times 10^{-3}}{2}=1 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-3.25 \times 10^{-4}}{1 \times 10^{-3}}=\mathbf{0 . 3 2 5}$
1.12. $\varepsilon_{\text {axial }}=0.05 / 50=0.001 \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {lateral }}=-v \times \varepsilon_{\text {axial }}=-0.33 \times 0.001=-0.00303 \mathrm{in} . / \mathrm{in}$.
$\Delta \mathrm{d}=\varepsilon_{\text {lateral }} \times \mathrm{d}_{0}=-0.00825 \mathrm{in}$. (Contraction)
1.13. $\mathrm{L}=380 \mathrm{~mm}$
$\mathrm{D}=10 \mathrm{~mm}$
$\mathrm{P}=24.5 \mathrm{kN}$
$\sigma=\mathrm{P} / \mathrm{A}=\mathrm{P} / \pi \mathrm{r}^{2}$
$\sigma=24,500 \mathrm{~N} / \pi(5 \mathrm{~mm})^{2}=312,000 \mathrm{~N} / \mathrm{mm}^{2}=312 \mathrm{Mpa}$
The copper and aluminum can be eliminated because they have stresses larger than their yield strengths as shown in the table below.
For steel and brass, $\delta=\frac{P L}{A E}=\frac{24,500 \mathrm{lb} \times 380 \mathrm{~mm}}{\pi(5 m m)^{2} E(\mathrm{kPa})}=\frac{118,539}{E(M P a)} \mathrm{mm}$

| Material | Elastic Modulus <br> $(\mathrm{MPa})$ | Yield Strength <br> $(\mathrm{MPa})$ | Tensile Strength <br> $(\mathrm{MPa})$ | Stress <br> $(\mathrm{MPa})$ | $\delta$ <br> $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Copper | 110,000 | 248 | 289 | 312 |  |
| Al. alloy | 70,000 | 255 | 420 | 312 |  |
| Steel | 207,000 | 448 | 551 | 312 | 0.573 |
| Brass alloy | 101,000 | 345 | 420 | 312 | 1.174 |

The problem requires the following two conditions:
a. No plastic deformation $\Rightarrow$ Stress < Yield Strength
b. Increase in length, $\delta<0.9 \mathrm{~mm}$

The only material that satisfies both conditions is steel.
1.14. $\sigma=\frac{\mathrm{F}}{\mathrm{A}_{0}}=\frac{7,000}{\pi(0.3)^{2}}=24,757 \mathrm{psi}=24.757 \mathrm{ksi}$

This stress is less than the yield strengths of all metals listed.
$\Delta \mathrm{l}=\frac{\sigma \mathrm{L}_{\mathrm{o}}}{\mathrm{E}}$

| Material | E (ksi) | Yield Strength (ksi) | Tensile Strength (ksi) | $\Delta \mathrm{L}$ (in.) |
| :--- | :---: | :---: | :---: | :---: |
| Steel alloy 1 | 26,000 | 125 | 73 | 0.014 |
| Steel alloy 2 | 29,000 | 58 | 36 | 0.013 |
| Titanium alloy | 16,000 | 131 | 106 | 0.023 |
| Copper | 17,000 | 32 | 10 | 0.022 |

Only the steel alloy 1 and steel alloy 2 have elongation less than 0.018 in .
1.15. $\sigma=\frac{\mathrm{F}}{\mathrm{A}_{0}}=\frac{31,000 \mathrm{~N}}{\pi\left(\frac{\left(15.24 \times 10^{-3} \mathrm{~m}\right.}{2}\right)^{2}}=169.9=170 \mathrm{MPa}$

This stress is less than the yield strengths of all metals listed.
$\Delta \mathrm{l}=\frac{\sigma \mathrm{L}_{0}}{\mathrm{E}}$

| Material | E (GPa) | Yield Strength (MPa) | Tensile Strength (MPa) | $\Delta \mathrm{L}(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | :---: |
| Steel alloy 1 | 180 | 860 | 502 | 0.378 |
| Steel alloy 2 | 200 | 400 | 250 | 0.340 |
| Titanium alloy | 110 | 900 | 730 | 0.618 |
| Copper | 117 | 220 | 70 | 0.581 |

Only the steel alloy 1 and steel alloy 2 have elongation less than 0.45 mm .
1.16. a. $\mathrm{E}=\sigma / \varepsilon=40,000 / 0.004=10 \times 10^{6} \mathbf{~ p s i}$
b. Tangent modulus at a stress of $45,000 \mathrm{psi}$ is the slope of the tangent at that stress $=\mathbf{4 . 7} \mathbf{x}$ $10^{6} \mathrm{psi}$
c. Yield stress using an offset of 0.002 strain $=\mathbf{4 9 , 0 0 0} \mathbf{~ p s i}$
d. Maximum working stress $=$ Failure stress $/$ Factor of safety $=49,000 / 1.5=\mathbf{3 2 , 6 7 0} \mathbf{~ p s i}$
1.17. a. Modulus of elasticity within the linear portion $=\mathbf{2 0 , 0 0 0} \mathbf{~ k s i}$.
b. Yield stress at an offset strain of $0.002 \mathrm{in} . / \mathrm{in} . \approx 70.0 \mathrm{ksi}$
c. Yield stress at an extension strain of $0.005 \mathrm{in} / \mathrm{in}$. $\approx \mathbf{6 9 . 5} \mathbf{~ k s i}$
d. Secant modulus at a stress of $62 \mathrm{ksi} . \approx \mathbf{1 8 , 0 0 0} \mathbf{k s i}$
e. Tangent modulus at a stress of $65 \mathrm{ksi} \approx \mathbf{6 , 0 0 0} \mathbf{k s i}$
1.18. a. Modulus of resilience $=$ the area under the elastic portion of the stress strain curve $=$ $1 / 2(50 \times 0.0025) \approx \mathbf{0 . 0 6 2 5} \mathbf{~ k s i}$
b. Toughness $=$ the area under the stress strain curve (using the trapezoidal integration technique) $\approx 0.69 \mathbf{k s i}$
c. $\sigma=40 \mathrm{ksi}$, this stress is within the elastic range, therefore, $\mathrm{E}=\mathbf{2 0 , 0 0 0} \mathbf{k s i}$
$\varepsilon_{\text {axial }}=40 / 20,000=0.002 \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-0.00057}{0.002}=\mathbf{0 . 2 8 5}$
d. The permanent strain at $70 \mathrm{ksi}=\mathbf{0 . 0 0 1 8} \mathbf{~ i n} . / \mathrm{in}$.
1.19.

|  | Material A | Material B |
| :--- | :---: | :---: |
| a. Proportional limit | $\mathbf{5 1} \mathbf{~ k s i}$ | $\mathbf{4 0} \mathbf{~ k s i}$ |
| b. Yield stress at an offset strain <br> of 0.002 in./in. | $\mathbf{6 3} \mathbf{~ k s i}$ | $\mathbf{5 2} \mathbf{~ k s i}$ |
| c. Ultimate strength | $\mathbf{1 3 2} \mathbf{~ k s i}$ | $\mathbf{7 3} \mathbf{~ k s i}$ |
| d. Modulus of resilience | $\mathbf{0 . 0 6 5} \mathbf{~ k s i}$ | $\mathbf{0 . 0 7} \mathbf{~ k s i}$ |
| e. Toughness | $\mathbf{8 . 2} \mathbf{~ k s i}$ | $\mathbf{7 . 5} \mathbf{~ k s i}$ |
| f. | Material B is more ductile as it undergoes more <br> deformation before failure |  |

1.20. Assume that the stress is within the linear elastic range.
$\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{0.3 x 16,000}{10}=480 \mathrm{ksi}$
Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region, and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.21. Assume that the stress is within the linear elastic range.

$$
\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{7.6 \times 105,000}{250}=3,192 \mathrm{MPa}
$$

Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.22. At $\sigma=60,000 \mathrm{psi}, \varepsilon=\sigma / \mathrm{E}=60,000 /\left(30 \times 10^{6}\right)=0.002 \mathrm{in} . / \mathrm{in}$.
a. For a strain of 0.001 in ./in.: $\varepsilon=\sigma \mathrm{E}=0.001 \times 30 \times 10^{6}=\mathbf{3 0 , 0 0 0} \mathbf{~ p s i}$ (for both i and ii)
b. For a strain of $0.004 \mathrm{in} . / \mathrm{in}$.:

$$
\begin{aligned}
& \sigma=\mathbf{6 0 , 0 0 0} \mathbf{~ p s i}(\text { for i) } \\
& \sigma=60,000+2 \times 10^{6}(0.004-0.002)=\mathbf{6 4 , 0 0 0} \mathbf{~ p s i}(\text { for ii) }
\end{aligned}
$$

1.23. . Slope of the elastic portion $=600 / 0.003=2 \times 10^{5} \mathrm{MPa}$

Slope of the plastic portion $=(800-600) /(0.07-0.003)=2,985 \mathrm{MPa}$
Strain at $650 \mathrm{MPa}=0.003+(650-600) / 2,985=0.0198 \mathrm{~m} / \mathrm{m}$
Permanent strain at $650 \mathrm{MPa}=0.0198-650 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 1 6 5} \mathbf{~ m} / \mathrm{m}$
b. Percent increase in yield strength $=100(650-600) / 600=\mathbf{8 . 3 \%}$
c. The strain at $625 \mathrm{MPa}=625 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 0 3 1 2 5} \mathbf{~ m} / \mathrm{m}$

This strain is elastic.
1.24. a. $\sigma_{\max }=\frac{F}{A_{o}}=\frac{39,872 \mathrm{~N}}{100 \times 10^{6} \mathrm{~m}^{2}}=0.000399 \mathrm{~Pa}=398 \mathrm{MPa}$
b. $E=\frac{\sigma}{\varepsilon}=\frac{\sigma x L_{o}}{\Delta L}=\frac{\sigma x L_{o}}{\left(L-L_{o}\right)}$
$E x\left(L-L_{o}\right)=\sigma x L_{o}$
$110 \times 10^{3} \mathrm{MPa} \times\left(67.21 \mathrm{~mm}-L_{o}\right)=398 \mathrm{MPa} \times L_{o}$
$L_{o}=66.97 \mathrm{~mm}$
1.25. a. $\sigma_{\max }=\frac{F}{A_{o}}=\frac{8,944}{0.24}=37,266.667 \mathrm{psi}$
b. $E=\frac{\sigma}{\varepsilon}=\frac{\sigma x L_{o}}{\Delta L}=\frac{\sigma x L_{o}}{\left(L-L_{o}\right)}$
$E x\left(L-L_{o}\right)=\sigma x L_{o}$
$16 \times 10^{6} x\left(3.28-L_{o}\right)=37,266.667 x L_{o}$
$L_{o}=3.27 \mathrm{in}$.
1.26. $\varepsilon_{a}=\frac{-\varepsilon_{l}}{V}=\frac{\frac{-\Delta d}{d}}{V}=\frac{-\Delta d}{d V}$

$$
\begin{aligned}
\boldsymbol{E} & =\frac{\sigma_{a}}{\varepsilon_{a}}=\frac{\frac{F}{\left(\frac{d^{2}}{4}\right)}}{\frac{-\Delta d}{d V}}=\frac{-4 F d V}{\pi d^{2} \Delta d} \\
F & =-\frac{-d \Delta d \pi E}{4 \nu} \\
\mathrm{~F} & =\frac{-\left(19 \times 10^{-3} \mathrm{~m}\right)\left(-3.0 \times 10^{-6} \mathrm{~m}\right)(\pi)\left(110 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)}{4(0.35)}=14,070 \mathrm{~N}
\end{aligned}
$$

1.27. $\varepsilon_{a}=\frac{-\varepsilon_{l}}{\nu}=\frac{\frac{-\Delta d}{d}}{\nu}=\frac{-\Delta d}{d \nu}$

$$
\begin{aligned}
& \boldsymbol{E}=\frac{\sigma_{a}}{\varepsilon_{a}}=\frac{\frac{\left(\frac{F}{4 d^{2}}\right.}{\frac{-\Delta d}{d V}}}{d \nu}=\frac{-4 \boldsymbol{F} d V}{\pi d^{2} \Delta d} \\
& F=-\frac{-d \Delta d \pi E}{4 v} \\
& \mathrm{~F}=\frac{-(0.5 \mathrm{in} .)\left(-1 \times 10^{-4} \mathrm{in} .\right)(\pi)\left(16 \times 10^{6} \mathrm{psi}\right)}{4(0.35)}=1,795 \mathrm{lb}
\end{aligned}
$$

1.28. See Sections 1.2.3, 1.2.4 and 1.2.5.
1.29. The stresses and strains can be calculated as follows:
$\sigma=\mathrm{P} / \mathrm{A}_{o}=150 /\left(\pi \times 2^{2}\right)=11.94 \mathrm{psi}$
$\varepsilon=\left(\mathrm{H}_{0}-\mathrm{H}\right) / \mathrm{H}_{\mathrm{o}}=(6-\mathrm{H}) / 6$
The stresses and strains are shown in the following table:

| Time <br> (min.) | H <br> (in.) | Strain <br> (in./in.) | Stress <br> (psi) |
| :---: | :---: | :---: | :---: |
| 0 | 6 | 0.00000 | 11.9366 |
| 0.01 | 5.9916 | 0.00140 | 11.9366 |
| 2 | 5.987 | 0.00217 | 11.9366 |
| 5 | 5.9833 | 0.00278 | 11.9366 |
| 10 | 5.9796 | 0.00340 | 11.9366 |
| 20 | 5.9753 | 0.00412 | 11.9366 |
| 30 | 5.9725 | 0.00458 | 11.9366 |
| 40 | 5.9708 | 0.00487 | 11.9366 |
| 50 | 5.9696 | 0.00507 | 11.9366 |
| 60 | 5.9688 | 0.00520 | 11.9366 |
| 60.01 | 5.9772 | 0.00380 | 0.0000 |
| 62 | 5.9807 | 0.00322 | 0.0000 |
| 65 | 5.9841 | 0.00265 | 0.0000 |
| 70 | 5.9879 | 0.00202 | 0.0000 |
| 80 | 5.9926 | 0.00123 | 0.0000 |
| 90 | 5.9942 | 0.00097 | 0.0000 |
| 100 | 5.9954 | 0.00077 | 0.0000 |
| 110 | 5.9959 | 0.00068 | 0.0000 |
| 120 | 5.9964 | 0.00060 | 0.0000 |

a. Stress versus time plot for the asphalt concrete sample


Strain versus time plot for the asphalt concrete sample

b. Elastic strain $=\mathbf{0 . 0 0 1 4} \mathbf{i n} . / \mathrm{in}$.
c. The permanent strain at the end of the experiment $=\mathbf{0 . 0 0 0 6} \mathbf{~ i n} . / \mathbf{i n}$.
d. The phenomenon of the change of specimen height during static loading is called creep while the phenomenon of the change of specimen height during unloading called is called recovery.
1.30. See Figure 1.12(a).
1.31. a. For $\mathrm{F} \leq \mathrm{F}_{\mathrm{o}}: \delta=$ F.t $/ \beta$

For $\mathrm{F}>\mathrm{F}_{\mathrm{o}}$, movement
b. For $\mathrm{F} \leq \mathrm{F}_{\mathrm{o}}: \delta=\mathrm{F} / \mathrm{M}$

For $\mathrm{F}>\mathrm{F}_{\mathrm{o}}: \delta=\mathrm{F} / \mathrm{M}+\left(\mathrm{F}-\mathrm{F}_{\mathrm{o}}\right) \mathrm{t} / \beta$
1.32. See Section 1.2.7.
1.34. a. For $P=5 \mathrm{kN}$

Stress $=\mathrm{P} / \mathrm{A}=5000 /\left(\pi \times 5^{2}\right)=63.7 \mathrm{~N} / \mathrm{mm}^{2}=63.7 \mathrm{MPa}$
Stress $/$ Strength $=63.7 / 290=0.22$
From Figure 1.16, an unlimited number of repetitions can be applied without fatigue failure.
b. For $\mathrm{P}=11 \mathrm{kN}$

Stress $=P / A=11000 /\left(\pi \times 5^{2}\right)=140.1 \mathrm{~N} / \mathrm{mm}^{2}=140.1 \mathrm{MPa}$
Stress / Strength $=140.1 / 290=0.48$
From Figure 1.16, N $\approx 700$
1.35. See Section 1.2.8.
1.36.

| Material | Specific Gravity |
| :--- | :---: |
| Steel | 7.9 |
| Aluminum | 2.7 |
| Aggregates | $2.6-2.7$ |
| Concrete | 2.4 |
| Asphalt cement | $1-1.1$ |

1.37. See Section 1.3.2.
1.38. $\delta L=\alpha_{L} x \delta T \times L=12.5 \mathrm{E}-06 \times(115-15) \times 200 / 1000=0.00025 \mathrm{~m}=250$ microns

Rod length $=\mathrm{L}+\delta L=200,000+250=\mathbf{2 0 0 , 2 5 0}$ microns

## Compute change in diameter linear method

$$
\delta d=\alpha_{d} \times \delta T \times d=12.5 \mathrm{E}-06 \times(115-15) \times 20=0.025 \mathrm{~mm}
$$

Final d $=\mathbf{2 0 . 0 2 5} \mathbf{~ m m}$

## Compute change in diameter volume method

$\delta V=\alpha_{V} x \delta T x V=(3 \times 12.5 \mathrm{E}-06) \times(115-15) \times \pi(10 / 1000)^{2} \times 200 / 1000=2.3562 \times 10^{11}$ $\mathrm{m}^{3}$
Rod final volume $=V+\delta V=\pi r^{2} L+\delta V=6.28319 \times 10^{13}+2.3562 \times 10^{11}=6.31 \times 10^{13} \mathrm{~m}^{3}$
Final d $=\mathbf{2 0 . 0 2 5} \mathbf{~ m m}$

There is no stress acting on the rod because the rod is free to move.
1.39. Since the rod is snugly fitted against two immovable nonconducting walls, the length of the rod will not change, $\mathbf{L}=\mathbf{2 0 0} \mathbf{~ m m}$

From problem 1.25, $\delta L=0.00025 \mathrm{~m}$
$\varepsilon=\delta L / \mathrm{L}=0.00025 / 0.2=0.00125 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=0.00125 \times 207,000=\mathbf{2 5 8 . 7 5} \mathbf{~ M P a}$
The stress induced in the bar will be compression.
1.40. a. The change in length can be calculated using Equation 1.9 as follows:

$$
\delta L=\alpha_{L} x \delta T x L=1.1 \mathrm{E}-5 \times(5-40) \times 4=\mathbf{- 0 . 0 0 1 5 4} \mathbf{m}
$$

b. The tension load needed to return the length to the original value of 4 meters can be calculated as follows:
$\varepsilon=\delta L / \mathrm{L}=-0.00154 / 4=-0.000358 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=-0.000358 \times 200,000=-77 \mathrm{MPa}$
$\mathrm{P}=\sigma \times \mathrm{A}=-77 \times(100 \times 50)=-385,000 \mathrm{~N}=\mathbf{- 3 8 5} \mathbf{k N}$ (tension)
c. Longitudinal strain under this load $=\mathbf{0 . 0 0 0 3 5 8} \mathbf{~ m} / \mathbf{m}$
1.41. If the bar was fixed at one end and free at the other end, the bar would have contracted and no stresses would have developed. In that case, the change in length can be calculated using Equation 1.9 as follows.
$\delta L=\alpha_{L} \times \delta T \times L=0.000005 \times(0-100) \times 50=-0.025 \mathrm{in}$.
$\varepsilon=\delta L / \mathrm{L}=0.025 / 50=0.0005 \mathrm{in} . / \mathrm{in}$.
Since the bar is fixed at both ends, the length of the bar will not change. Therefore, a tensile stress will develop in the bar as follows.
$\sigma=\varepsilon \mathrm{E}=-0.0005 \times 5,000,000=-2,500 \mathrm{psi}$
Thus, the tensile strength should be larger than $\mathbf{2 , 5 0 0} \mathbf{~ p s i}$ in order to prevent cracking.

### 1.43. See Section 1.7.

### 1.44. See Section 1.7.1

1.45. $\mathrm{H}_{0}: \mu \geq 32.4 \mathrm{MPa}$
$\mathrm{H}_{1}: \mu<32.4 \mathrm{MPa}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-3$
Degree of freedom $=v=\mathrm{n}-1=15$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,15}=-1.753$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.46. $\mathrm{H}_{0}: \mu \geq 5,000 \mathrm{psi}$
$\mathrm{H}_{1}: \mu<5,000 \mathrm{psi}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-2.236$
Degree of freedom $=v=\mathrm{n}-1=19$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,19}=-1.729$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.47. $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{20} x_{i}}{20}=\frac{113,965}{20}=5,698.25 \mathrm{psi}$

$$
s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{20}\left(x_{i}-5698.25\right)^{2}}{20-1}\right)^{1 / 2}=571.35 \mathrm{psi}
$$

Coefficient of Variation $=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{571.35}{5698.25}\right)=10.03 \%$
b. The control chart is shown below.


The target value is any value above the specification limit of $5,000 \mathrm{psi}$. The plant production is meeting the specification requirement.
1.48. a. $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{20} x_{i}}{20}=\frac{110.7}{20}=\mathbf{5 . 5} \%$

$$
\begin{aligned}
& s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{20}\left(x_{i}-5.5\right)^{2}}{20-1}\right)^{1 / 2}=\mathbf{0 . 3 3} \% \\
& C=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{0.33}{5.5}\right)=\mathbf{6 \%}
\end{aligned}
$$

b. The control chart is shown below.


The control chart shows that most of the samples have asphalt content within the specification limits. Only few samples are outside the limits. The plot shows no specific trend, but large variability especially in the last several samples.
1.49. See Section 1.8.2.
1.50. See Section 1.8.
1.51. a. No information is given about accuracy.
b. Sensitivity $==\mathbf{0 . 0 0 1}$ in.
c. Maximum reading $=0.001 \times 100 \times 10=1 \mathrm{in}$. Range $=\mathbf{0}-\mathbf{1}$ inch
d. Accuracy can be improved by calibration.
1.52. a. No information is given about accuracy.
b. Sensitivity $=\mathbf{= 0 . 0 0 2} \mathbf{~ m m}$
c. Maximum reading $=0.002 \times 20 \times 25=1 \mathrm{~mm}$ Range $=\mathbf{0}-\mathbf{1 m m}$
d. Accuracy can be improved by calibration.
1.53. a. 0.001 in .
b. 100 psi
c. 100 MPa
d. 0.1 g
e. 10 psi
f. $0.1 \%$
g. $0.1 \%$
h. 0.001
i. 100 miles
j. $10^{-6} \mathrm{~mm}$
1.54. The voltage is plotted versus displacement is shown below.


From the figure:
Linear range $= \pm 0.1 \mathrm{in}$.
Calibration factor $=101.2$ Volts/in.
1.55. The voltage plotted versus displacement is shown below.


From the figure:
Linear range $= \pm 0.3 \mathrm{in}$.
Calibration factor $=1.47$ Volts/in.

## CHAPTER 2. NATURE OF MATERIALS

2.1. See Section 2.2.1.

### 2.2. See Section 2.1.

2.3. See Section 2.1.1.
2.4. See Section 2.1.1.
2.5. See Section 2.1.2.
2.6. See Section 2.2.1.
2.7. See Section 2.1.2.
2.8. See Section 2.2.1.
2.9. See Section 2.2.1.
2.10. If the atomic masses and radii are the same, then the material that crystalizes into a lattice with a higher APF will have a larger density. The FCC structure has a higher APF than the BCC structure.
2.11. For the face-center cubic crystal structure, number of equivalent whole atoms in each unit cell $=4$
By inspection the diagonal of the face of a FCC unit cell $=4 \mathrm{r}$
Using Pythagorean theory:

$$
\begin{aligned}
& (4 \mathrm{r})^{2}=\mathrm{a}^{2}+\mathrm{a}^{2} \\
& 16 \mathrm{r}^{2}=2 \mathrm{a}^{2} \\
& 8 \mathrm{r}^{2}=\mathrm{a}^{2} \\
& a=2 \sqrt{2} r
\end{aligned}
$$

2.12. a. Number of equivalent whole atoms in each unit cell in the BCC lattice structure $=\mathbf{2}$
b. Volume of the sphere $=(4 / 3) \pi r^{3}$

Volume of atoms in the unit cell $=2 \times(4 / 3) \pi r^{3}=(8 / 3) \pi r^{3}$
By inspection, the diagonal of the cube of a BCC unit cell

$$
=4 \mathrm{r}=\sqrt{a^{2}+a^{2}+a^{2}}=a \sqrt{3}
$$

$\mathrm{a}=$ Length of each side of the unit cell $=\frac{4 r}{\sqrt{3}}$

